北京驴吊刘佳智能驾驶与智能座舱/车联网,本是两条完全独立的技术路线,经过了近百年的技术发 展后,终于在 21 世纪初叶融合到了一起,共同成就了一台智能汽车。当下正是智能网联汽 车发展的关键窗口期已经成为了行业共识,智能网联汽车的发展至未来,硬件会逐步趋同, 汽车也会由软件来定义,数据也会成为主要的驱动力。智能汽车领域具有很大的机遇!
20 世纪:视觉设备取代无线电设施,公路智能化转向车辆智能化。早期的无人车辆主 要通过无线 年代便出现了利用电子回路和光感性硒光电管的自动 引导小车,1920 年代出现了无线 年代世界博览会上,通用汽车公司 提出了“电子化高速公路”的自动驾驶畅想方案,此后一直在公众观念里流行,并于 1958 年第一次在改造后的高速公路上实现了前后车距保持以及自动转向功能。1970 年代受制于 成本因素,电子化高速公路逐渐被汽车厂商放弃,转向使用视觉设备进行无人驾驶尝试, 为车辆装配传感器、计算系统和控制系统等,赋予车辆“视觉”、智能和自动化的能力, 使车辆能够在结构化道路上实现自动驾驶,无人驾驶技术的发展方向从最初的公路智能化 转向车辆智能化,由此翻开了无人驾驶的新篇章。1980、90 年代,军方、大学和汽车公 司开始在无人驾驶技术上展开合作研究,其中典型的有自动驾驶汽车 ALVINN、 NavLab5 项目、无人驾驶原型车 ARGO 等。
21 世纪:技术竞赛推动智能化变革,自动驾驶技术迭代出新。21 世纪以来,在 DARPA 挑战赛的推动下,全球 ICT 公司和硅谷创业公司加入到智能汽车的研发中,传统汽车产业 “智能化”的变革由此展开。2007 年 DARPA 城市挑战赛第一名车辆——Boss,集成了 一种商用线控驱动系统,通过计算机控制,借助电动马达实现自动转向、刹车和换挡。Boss 配备了包括激光雷达、摄像头和雷达等在内十几个传感器,同时配备了由感知子系统、运 动规划子系统、路径规划、行为规划系统组成的软件系统,已经形成了当今自动驾驶汽车 的雏形。2018 年谷歌 Waymo 自动驾驶打车服务产品 Waymo One 上线,正式开始商 业化自动驾驶出行服务。2019 年,Tesla 发布搭载自研自动驾驶芯片的自动驾驶计算平台, 自动驾驶技术不断发展。
中国智能驾驶发展:20 世纪 80 年代起步,L2+及 L3 级已量产落地,特定场景可实现 L4 级。20 世纪 80 年代,中国无人驾驶的技术研发正式启动。八五期间研制成功中国第一 辆能够自主行驶的测试样车——ATB-1 无人车,行驶速度可达 21 公里/小时。目前我国自 动驾驶汽车量产正处在 L2 到 L2+阶段,L3 级别产品也开始出现,并且深圳、上海等城市 也逐步放开了对 L3 上路的法规要求,同时部分企业在矿山、港口、泊车等特定场景下可以 实现 L4 级。随着通信技术、算法、算力、传感器的进步和基础设施建设、监管法规的逐步 完善,中国自动驾驶市场的渗透率将不断提升,推动更高级别的自动驾驶汽车进入市场。
自动驾驶、智能座舱共同发力,促使传统汽车完成智能化革新,改变原本单一交通工 具定位。智能化时代带来了娱乐方式和用户体验的升级,使汽车由单纯的交通工具向生活 伙伴转变,进一步解放生产力。未来是数据驱动的时代,信息处理能力也将成为汽车的核 心能力。智能汽车将持续改变用户原有的用车习惯,增强使用者的驾驶体验和内容体验。L3 级及以上自动驾驶的逐步导入,逐渐解放驾驶员双手;车载声学、天幕、氛围灯、HUD、 智能座椅、大屏多屏等智能座舱配置持续增配,使车辆由单纯驾驶空间向户外办公/会议空 间、个人休闲娱乐空间、会客社交空间拓展,打造家庭、公司之外的第三空间。
智能座舱正从被动执行向主动服务进化,未来将演变为“第三生活空间”的核心载体。纵观汽车座舱的发展历史,汽车座舱的发展趋势可划分为 3 个阶段(被动执行、主动服务、 生活空间),5 个大类(机械时代、电子座舱、智能助理、人机共驾、第三生活空间)。而 不同阶段之间的演进,意味着对全新硬件的需求变化,以及对商业模式的变革与颠覆。
国家政策频出,支持智能汽车发展。为减少碳排放和环境污染,提高国内能源安全, 振兴汽车产业,国家已经出台多项政策促进智能网联汽车的发展。2015 年工信部发布的《中 国制造 2025》首次在政策层面涉及智能网联汽车,并制定了明确的发展路线。自此以后, 国家颁布了一系列政策与措施来支持智能汽车发展,覆盖生产规范、信息安全、功能模块 等多方面。2020 年发布的《智能汽车创新发展战略》明确提出了到 2025 年 L3-L4 级别自 动驾驶汽车的规模化应用目标。法规不断完善,为智能汽车商业化落地提供法律支撑。在中国市场,部分车型在技术 层面已经达到 L3 级水平,但出于法规及责任归属的考虑,仍以 L2+级辅助驾驶宣传。2022 年 6 月,深圳市发布《深圳经济特区智能网联汽车管理条例》,是全国首个对 L3 及以上自 动驾驶权责、定义等重要议题进行详细划分的法案,为全国其他地方的 L3 级自动驾驶准入 政策,提供了标准和模板,将推动国内高级别自动驾驶的落地,市场空间更加明晰。
消费市场对汽车定位正发生改变,终端消费者不再只将汽车视为运载工具,汽车成为 了提高生活品质的载体和空间。行业需要进一步提高汽车舒适性和驾驶质量,为消费者提 供更愉悦的用车体验。而智能化的本质就是为了安全舒适,解放人的自由。消费者对驾驶 安全性和舒适性的日益重视,使得智能驾驶和智能座舱关注度不断提升,在消费市场具有 广阔的发展空间。
车企、科技公司加码布局智能汽车赛道。近几年新势力、传统车企纷纷加码智能化布 局,部分智能电动车型已经实现量产,华为、百度、小米等科技互联网公司亦加速入局智 能电动汽车赛道,车企和科技公司共同发力,促进汽车智能化升级。电动化加速渗透背景下,智能化成为车企比拼的核心要素之一,自主品牌有望借智能 化东风迎来弯道超车良机。
汽车智能化在新能源汽车上的应用领先于传统汽车,新能源汽车渗透率提升超预期。近年来消费者对于新能源汽车接受度逐步提高,叠加多项政策激励,中国新能源市场低中 高端的真实需求全面觉醒;同时强势自主品牌以及造车新势力经过多年技术积累,优质供 给不断推出。根据中汽协数据,2022 年 1-6 月我国新能源乘用车销量渗透率达到 23.9%, 较 2021 年全年 15.5%的渗透率水平提升 8.5 个百分点,其中 2022 年 6 月渗透率达到了 25.6%。
纵观整个智能汽车的发展史,我们更进一步深信中国智造的崛起,我们预计汽车电子 将会承载较大产业链增量价值,中国企业在智能汽车领域具有较多突破机会的子领域。传统车时代:在中国市场,以均价 15 万的传统车为例,其整车制造部分年产值约 1.8 万亿元,研发服务/销售服务/金融服务/后市场分别为 1500/1000/1400/400 亿元。合计中 国传统车年均总产值 2.23 万亿元。智能电动车时代:智能化/电动化带来单车硬件成本增加分别约为 0.9/4.3 万元,单车 增幅超过 50%。综合考虑传统车被对冲的传统动力部分的产值,中国智能电动车产业年均 总产值约为 3.2 万亿,增加产值近 1 万亿,增幅为 43%,智能化是重要的增量部分。
在智能化趋势下,汽车传统电子电器(E/E)架构已无法胜任。传统汽车电子电气架构 (E/E 架构)以分布式为主,车辆各功能受不同且单一的电子控制单元(ECU)控制。随着 汽车功能的不断增加,分布式架构已不能满足市场发展。
在智能化的趋势下,汽车 E/E 架构的升级路径将体现为:分布式(模块化→集成化)、 域集中(域控制集中→跨域融合)、中央集中式(车载电脑→汽车→云计算)。为了解决 分布式架构的痛点,企业构想出一个中央电脑可以实现所有的功能,上下连接采集端和执 行端,即所谓的“中央集中式”架构,甚至可以做到车云协同的方式。但是落地阶段受限 于原有的供应链体系、系统定义矛盾、原有的软件生态固化等问题,目前只能做到域集中 的架构。即首先分布式 ECU(每个功能对应一个 ECU)演变成为域控制式(博世提出的五 域架构包括动力域、底盘域、车身域、座舱域和 ADAS 域),域控制的核心是域控制器(DCU, Domain Control Unit),然后部分域开始跨域融合发展,最后整合发展成为中央计算平 台(车载电脑)。
SOA 带来软件新机遇,软件定义汽车成发展趋势。集中式的 E/E 架构是软件定义汽车 得以实现的硬件基础,SOA 是软件定义汽车实现的软件基础。随着主机厂开发车型周期越 来越短,面临的开发需求更频繁,车上功能增多,主机厂需要更快速的响应时间以满足市 场需求,与此对应的是传统分布式 E/E 架构下,汽车采用的是“面向信号”的软件架构, ECU 之间通过 LIN/CAN 等总线进行点对点通信。为了真正实现软件定义汽车,从技术角度看,汽车软件架构正由“面向信号”的传统架构迈向“面向服务”的 SOA 架构 (Service-Oriented Architecture)。SOA 架构核心将每个控制器的底层功能以“服务”的形式进行封装,一个服务即是一个独立可执行的软件组件,并对其赋予特定的 IP 地址和 标准化接口以便随时调用,最终通过这些底层功能的自由组合实现某项复杂智能化的功能。因此需要 SOA 架构具有接口标准化、相互独立、松耦合三大特点:①各个“服务”间具有界定清晰的功能范围,并且留予标准化的访问接口;②每个服务之间相互独立且唯一,均属于汽车软件架构中的基础软件,因此若想升级 或新增某项功能只需通过标准化的接口进行调用即可;③具备松耦合的特性,独立于车型、硬件平台、操作系统以及编程语言。可以将传统 中间件编程从业务逻辑分离,允许开发人员集中精力编写上层的应用算法,而不必将大量 的时间花费在底层的技术实现上。
操作系统跟随硬件架构的跨域融合趋势数量在减少,按功能分类可分为车控操作系统、 自动驾驶操作系统与智能座舱操作系统。跨域融合方案下,域操作系统正在逐渐形成,传 统操作系统正由独立的多个操作系统向少数/一个操作系统发展。智能汽车操作系统从功能 实现角度来看,大致可分为车控操作系统、自动驾驶操作系统与智能座舱操作系统,其中 车控操作系统主要用于实现车身底盘控制、动力系统控制,自动驾驶操作系统主要用于实 现自动驾驶功能,智能座舱操作系统主要用于实现车载娱乐信息系统功能以及实现 HMI 相 应功能。操作系统是软件定义汽车发展基石。智能汽车SOA软件架构从上而下分别为应用软件、 功能软件、中间件、底层操作系统(狭义操作系统)、车载芯片软件(BSP)、虚拟机 (Hypervisor)与芯片,其中功能软件、中间件、底层操作系统、车载芯片软件与虚拟机组成广义操作系统,统称为系统层软件,是管理和控制智能汽车硬件与软件资源的底层, 提供运行环境、运行机制、通信机制和安全机制等。
自动驾驶的基本过程分为三部分:感知、决策、控制。其实现路径是通过感知系统融合 各个传感器的数据,借助不同的算法和支撑软件对感知层输出信息决策得出驾驶方案,最 终由控制系统完成对车辆的控制行为。感知指对于环境的场景理解能力,是实现自动驾驶的首要条件。感知系统通过融合各 个传感器的数据,实现对车辆运动环境以及驾驶员状态行为的感知与检测,进而形成全面 可靠的感知数据供决策与控制系统使用。决策指对感知层输出信息认知理解后根据驾驶需求进行任务决策,选择合适路径达到 目标,是实现自动驾驶最关键的一步。决策系统根据感知系统收集的信息合理决策当前车 辆行为,通过规划出实现任务的最优路径,决策出车辆行驶轨迹,并发送给控制层。执行指对决策和规划落实的切实行为,是实现自动驾驶的行为体现。执行系统执行驾 驶指令、控制车辆状态,借助车辆的驱动和制动控制及对方向盘与轮胎的控制实现纵向和 横向自动控制,按给定目标和约束自动控制车运行,进而达到自动驾驶的目的。
当下汽车行业处于深刻的智能化变革期,由产业到公司的自上而下的分析方法能够更 为准确的抓住在汽车行业智能化变化中蕴藏的机遇,技术渗透率和单车价值量决定赛道的 市场空间,国内龙头发展机会决定公司能否受益于行业变革,以上三点是我们赛道筛选的 核心要素。我们从产业趋势、竞争格局、赛道壁垒、赛道玩家、渗透率和单车价值量所决 定的行业空间等方面出发,围绕各个智能化赛道下技术渗透率变化、单车价值量变化、国 内龙头发展机会,建立赛道筛选的逻辑支撑:①较为确定的产业趋势是渗透率能稳步提升的支撑;②单车价值量变化有两条路径,一是国产替代下赛道产品单价下降,驱动技术渗透率 提升,二是智能化升级带动产品的功能升级,驱动单车价值量的提升;
以上两点决定赛道的成长空间。③外资目前占优+少数国内潜在龙头的竞争格局能够给予国内龙头更好的发展机遇。由此,我们测算出各个智能化赛道 2021 年~2025 年市场规模,并判断出哪些赛道中 国内龙头企业有较好的发展机遇,进而筛选出成长空间最广阔、国内龙头企业发展格局最好的 7 个优质细分赛道,按市场规模增速由大到小排序依次为:激光雷达、HUD、空气悬 架、线控制动、智能驾驶控制器、声学功放、ADB 大灯。
|